3,420 research outputs found

    Observability of a projected new state of matter: a metallic superfluid

    Full text link
    Dissipationless quantum states, such as superconductivity and superfluidity, have attracted interest for almost a century. A variety of systems exhibit these macroscopic quantum phenomena, ranging from superconducting electrons in metals to superfluid liquids, atomic vapours, and even large nuclei. It was recently suggested that liquid metallic hydrogen could form two new unusual dissipationless quantum states, namely the metallic superfluid and the superconducting superfluid. Liquid metallic hydrogen is projected to occur only at an extremely high pressure of about 400 GPa, while pressures on hydrogen of 320 GPa having already been reported. The issue to be adressed is if this state could be experimentally observable in principle. We propose four experimental probes for detecting it.Comment: in print in Phys. Rev. Let

    Low-temperature nodal-quasiparticle transport in lightly doped YBa_{2}Cu_{3}O_{y} near the edge of the superconducting doping regime

    Full text link
    In-plane transport properties of nonsuperconducting YBa_{2}Cu_{3}O_{y} (y = 6.35) are measured using high-quality untwinned single crystals. We find that both the a- and b-axis resistivities show log(1/T) divergence down to 80 mK, and accordingly the thermal conductivity data indicate that the nodal quasiparticles are progressively localized with lowering temperature. Hence, both the charge and heat transport data do not support the existence of a "thermal metal" in nonsuperconducting YBa_{2}Cu_{3}O_{y}, as opposed to a recent report by Sutherland {\it et al.} [Phys. Rev. Lett. {\bf 94}, 147004 (2005)]. Besides, the present data demonstrate that the peculiar log(1/T) resistivity divergence of cuprate is {\it not} a property associated with high-magnetic fields.Comment: 4 pages, 3 figures. Our previous main claim that the pseudogap state of cuprates is inherently insulating was found to be erroneous and has been retracted; the paper now focuses on the log(1/T) resistivity divergence and its implication

    Calculated NMR T_2 relaxation due to vortex vibrations in cuprate superconductors

    Full text link
    We calculate the rate of transverse relaxation arising from vortex motion in the mixed state of YBa_2Cu_3O_7 with the static field applied along the c axis. The vortex dynamics are described by an overdamped Langevin equation with a harmonic elastic free energy. We find that the variation of the relaxation with temperature, average magnetic field, and local field is consistent with experiments; however, the calculated time dependence is different from what has been measured and the value of the rates calculated is roughly two orders of magnitude slower than what is observed. Combined with the strong experimental evidence pointing to vortex motion as the dominant mechanism for T_2 relaxation, these results call into question a prior conclusion that vortex motion is not significant in T_1 measurements in the vortex state.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    High-field Hall resistivity and magnetoresistance in electron-doped Pr_2-xCe_xCuO_{4-\delta}

    Full text link
    We report resistivity and Hall effect measurements in electron-doped Pr2−x_{2-x}Cex_{x}CuO4−δ_{4-\delta} films in magnetic field up to 58 T. In contrast to hole-doped cuprates, we find a surprising non-linear magnetic field dependence of Hall resistivity at high field in the optimally doped and overdoped films. We also observe a crossover from quadratic to linear field dependence of the positive magnetoresistance in the overdoped films. A spin density wave induced Fermi surface reconstruction model can be used to qualitatively explain both the Hall effect and magnetoresistance.Comment: PRL in pres

    Effective mass in quasi two-dimensional systems

    Full text link
    The effective mass of the quasiparticle excitations in quasi two-dimensional systems is calculated analytically. It is shown that the effective mass increases sharply when the density approaches the critical one of metal-insulator transition. This suggests a Mott type of transition rather than an Anderson like transition.Comment: 3 pages 3 figure

    Universal alternating order around impurities in antiferromagnets

    Full text link
    The study of impurities in antiferromagnets is of considerable interest in condensed matter physics. In this paper we address the elementary question of the effect of vacancies on the orientation of the surrounding magnetic moments in an antiferromagnet. In the presence of a magnetic field, alternating magnetic moments are induced, which can be described by a universal expression that is valid in any ordered antiferromagnet and turns out to be independent of temperature over a large range. The universality is not destroyed by quantum fluctuation, which is demonstrated by quantum Monte Carlo simulations in the two-dimensional Heisenberg antiferromagnet. Physical predictions for finite doping are made, which are relevant for experiments probing Knight shifts and the order parameter.Comment: 5 pages, 2 figures. The most recent version in PDF format can be found at http://www.physik.uni-kl.de/eggert/papers

    A superconductor to superfluid phase transition in liquid metallic hydrogen

    Full text link
    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties, including spatial order. To date, the structure of dense hydrogen remains experimentally elusive. Recent studies of the melting curve of hydrogen indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report an analysis based on topological arguments of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.Comment: for a related paper see cond-mat/0410425. A correction to the front page caption appeared in Oct 14 issue of Nature: http://www.nature.com/nature/links/041014/041014-11.htm

    Intraband Optical Spectral Weight in the presence of a van Hove singularity: application to Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    The Kubo single band sum rule is used to determine the optical spectral weight of a tight binding band with further than nearest neighbour hopping. We find for a wide range of parameters and doping concentrations that the change due to superconductivity at low temperature can be either negative or positive. In contrast, the kinetic energy change is always negative. We use an ARPES determined tight binding parametrization of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} to investigate whether this can account for recent observations of a positive change in the spectral weight due to the onset of superconductivity. With this band structure we find that in the relevant doping regime a straightforward BCS calculation of the optical spectral weight cannot account for the experimental observations.Comment: 10 page 9 figure

    Universal temperature dependence of the magnetization of gapped spin chains

    Full text link
    Temperature dependence of the magnetization of the Haldane spin chain at finite magnetic field is analyzed systematically. Quantum Monte Carlo data indicates a clear minimum of magnetization as a function of temperature in the gapless regime. On the basis of the Tomonaga-Luttinger liquid theory, we argue that this minimum is rather universal and can be observed for general axially symmetric quasi-one-dimensional spin systems. Our argument is confirmed by the magnetic-field dependence of the spin-wave velocity obtained numerically. One can estimate a magnitude of the gap of any such systems by fitting the experimental data with the magnetization minimum.Comment: 9 pages, 7 figure

    Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors

    Full text link
    Non-classical response to rotation is a hallmark of quantum ordered states such as superconductors and superfluids. The rotational responses of all currently known single-component "super" states of matter (superconductors, superfluids and supersolids) are largely described by two fundamental principles and fall into two categories according to whether the systems are composed of charged or neutral particles: the London law relating the angular velocity to a subsequently established magnetic field and the Onsager-Feynman quantization of superfluid velocity. These laws are theoretically shown to be violated in a two-component superconductor such as the projected liquid metallic states of hydrogen and deuterium at high pressures. The rotational responses of liquid metallic hydrogen or deuterium identify them as a new class of dissipationless states; they also directly point to a particular experimental route for verification of their existence.Comment: Nature Physics in print. This is an early version of the paper. The final version will be posted 6 months after its publication Nature Physics, according to the journal polic
    • …
    corecore